

Certificate of Conformity

The products

EUT: 802.11g 54Mbps ADSL Modem Router TRADE NAME: TRENDware MODEL NO.: TEW-435BRM

which produced by

TRENDware International, Inc. 3135 Kashiwa Street, Torrance, CA90505 U.S.A

Regulation Applied : FCC Rules and Regulations Part 15 Subpart B (2002) / CISPR 22 ET Docket No. 95-19 (Doc Procedure)

I HEREBY CERTIFY THAT : The data shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Signature

Signature Will Yauo Manager of EMC Testing Department II Electronics Testing Center, Taiwan

Report Number :ET93R-02-042

Note:1.The result of the testing report relate only to the item tested.2.The testing report shall not be reproduced expect in full, without the written approval of ETC.

3. The report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

ELECTRONICS TESTING CENTER, TAIWAN NO. 34, LIN 5, DING FU TSUN, LINKOU HSIANG, TAIPEI TAIWAN, R.O.C. TEL;(02)26023052 INT:+886-2-26023052 FAX:(02)26010910 INT:+886-2-26010910

FEDERAL COMMUNICATIONS COMMISSION Declaration of Conformity (DoC)

The following equ	ipment:
Product Name	: 802.11g 54Mbps ADSL Modem Router
Trade Name	: TRENDware
Model Number	: TEW -435BRM
is herewith confirm	ned to comply with the requirements of FCC Part 15 Rules.
The operation is su	ubject to the following two conditions:
(1) This device ma	ay not cause harmful interference, and
(2) This device m	ust accept any interference received, including interference
that may cause	undesire operation.
The result of electric	romagnetic emission has been evaluated by ETC EMI
Laboratory (NVLA	P LAB CODE:200133-0) and showed in the test
report: ET93R-02-	042
It is understood th any changes to the characteristics will	at each unit marketed is identical to the device as tested, and e device which could adversely affect the emission I require retest.
The following imp	orter/manufacturer is responsible for this declaration:
Company Name	:
Company Address	3 :
Telephone	: Facsimile :
Person in responsi	ble for marking this declaration:
Name (Full Name)	Position/Title
Legal Signature)	Date
自我符合宣告書請依上述文件製	作
宣告者須在美國當地,故所填之	公司地址、電話、傳真必須是在美國當地。
FCC Doc Label 樣本參考	
一般產品或系統標示如下	CPU Board 或 Power Supply 標示如下
Trade Name Model	Number Trade Name Model Number
FC Tested To C With FCC S	omply tandards FCC Assembled From Tested Components (Complete System Not Tested)

FOR HOME OR OFFICE USE

FOR HOME OR OFFICE USE

EMI TEST REPORT of

E.U.T. : 802.11g 54Mbps ADSL Modem Router MODEL : TEW-435BRM

for

- APPLICANT : TRENDware International, Inc.
- ADDRESS : 3135 Kashiwa Street, Torrance, CA90505 U.S.A

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN

NO. 34, LIN 5, DING FU TSUN, LINKOU HSIANG, TAIPEI HSIEN, TAIWAN, R.O.C.

Tel:(02)26023052 Fax:(02)26010910

http://www.etc.org.tw;e-mail:etcemi@seed.net.tw

Report Number : ET93R-02-042

TEST REPORT

Applicant	: TRENDware International, Inc. 3135 Kashiwa Street, Torrance, CA90505 U.S.A
Manufacturer	: TRENDware International, Inc. 3135 Kashiwa Street, Torrance, CA90505 U.S.A
Description of EUT	
a) Type of EUT b) Trade Name c) Model No. d) Power Supply	: 802.11g 54Mbps ADSL Modem Router : TRENDware : TEW-435BRM : Adapter I/P: 120Vac/60Hz ; O/P: 15Vdc, 1A

Regulation Applied : FCC Rules and Regulations Part 15 Subpart B (2002) / CISPR 22 ET Docket No. 95-19 (Doc Procedure)

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The result of the testing report relate only to the item tested.

- 2. The testing report shall not be reproduced expect in full, without the written approval of ETC.
- 3. The report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Issued Date : Feb.	13, 2004
Test Engineer :	Kevin Lee ASTING DEPARTMEN
	(Kevin Lee) 合合人法國財
Approve & Authorized :	Dill Your Relief
	Will Yauo, Manager
	EMC Dept. II of ELECTRONICS
	TESTING CENTER, TAIWAN

Table of Contents	Page
1 GENERAL INFORMATION	1
1.1 Product Description and Operation	
1.2 Test Methodology	
1.3 Test Facility	1
2 PROVISIONS APPLICABLE	2
2.1 Definition	
2.2 Requirement for Compliance	
2.3 Labeling Requirement	
2.4 User Information	5
3. SYSTEM TEST CONFIGURATION	6
3.1 Justification	6
3.2 Devices for Tested System	6
3.3 Deviation Statement	6
4 RADIATED EMISSION MEASUREMENT	7
4.1 Applicable Standard	7
4.2 Measurement Procedure	7
4.3 Measuring Instrument	
4.4 Radiated Emission Data	9
4.5 Field Strength Calculation	
4.6 Photos of Radiation Measuring Setup	
5 CONDUCTED EMISSION MEASUREMENT	
5.1 Standard Applicable	
5.2 Measurement Procedure	
5.3 Conducted Emission Data	
5.4 Result Data Calculation	
5.5 Conducted Measurement Equipment	
5.6 Photos of Conduction Measuring Setup	
APPENDIX 1 : PLOTTED DATA FOR CONDUCTED EMISSION	

ETC Report No. : ET93R-02-042

Sheet 1 of 31 Sheets

1 GENERAL INFORMATION

1.1 Product Description and Operation

The TEW-435BRM router provides the following features :

- 1. A powerful, true firewall
- 2. Content filtering
- 3. Auto Sensing and Auto UplinkTM LAN Ethernet connections
- 4. Extensive Internet protocol support
- 5. Easy, Web-based setup for installation and management

1.2 Test Methodology

For TEW-435BRM, both conducted and radiated emissions were performed according to the procedures in ANSI C63.4 (1992).

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the roof top of Building at No.34, Lin 5, Ding Fu Tsun, Linkou Hsiang, Taipei Hsien, Taiwan, R.O.C.

This site has been fully described in a report submitted to your office, and accepted in a letter dated Feb. 10, 2000.

2 PROVISIONS APPLICABLE

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class B Digital Device :

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note : A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

Sheet 3 of 31 Sheets

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency MHz	Quasi Peak dB µ V	Average dB µ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

* Decreases with the logarithm of the frequency

(2) Radiated Emission Requirement

For unintentional device, according to FCC §15.109(a), the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
MHz	Meters	dB µ V/m	μ V/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
Above 960	3	54.0	500

For unintentional device, according to CISPR Line Conducted Emission Limits class B is as following:

Frequency MHz	Distance Meters	Radiated dB µ V/m		
30 to 230	10	30		
230 to 1000	10	37		

2.3 Labeling Requirement

Products sjubject to authorization under a Declaration of Conformity shall be labeled as follows:

- (1) The label shall be located in a conspicuous location on the device and shall contain the unique identification described in Section 2.1074 of this chapter and the following logo:
 - (i) IF the product is authorized based on teting of the product or system:

(ii) If the product is authorized based on assembly using separately authorized components, in accordance with Section 15.101(c)(2) or (c)(3), and the resulting product is not separately tested:

- (2) Label text and information should be in a size of type large enough to be readily legible, consistent with the dimensions of the equipment and the label. However, the type size for the text is not required to be larger than eight point.
- (3) When the device is so small or for such used that it is not practicable to place the statement specified under paragraph (b)(1) of this section on it, such as for a CPU board or a plug-in circuit board peripheral device, the text associated with the logo may be placed in a prominent location in the instruction manual or pamphlet supplied to the user. However, the unique identification (trade name and model number) and the logo must be displayed on the device.
- (4) The label shall not be a stick-on, paper label. The labelon these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase, as described in Section 2.925(d) of this chapter. "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelibly printed, or otherwise permanently marked on a permanently attached part of the equipment or an a nameplate of metal, plastic, or other material fastened to the equipment by welding, riveting, or a permanent adhesive. The label must be designed to the last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable.

2.4 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion, as a customer would normally use it.

For radiated emission measuring, the EUT was rotated to obtain the maximum level of radiated emissions. The antenna was varied in height from 1 to 4 meters above ground to obtain the maximum signal strength. Measurement was performed under the condition that a computer program was exercised to simulate data communication of EUT. Three highest emissions were verified with varying placement of the connected cable to maximize the emission from EUT.

Device	Model No.	Manufacturer	Description		
802.11g 54Mbps ADSL Modem Router*	TEW-435BRM	TRENDware International, Inc.	1.2m Unshielded Cable		
NotebookPC	Thinkkpad X21	IBM	1.8m Unshielded AC Power Cord		
Print	Stylus photo 700	EPSON	1.2m Shielded Cable		
Mouse	M-S42	42 ACER 1.5m Unshielded Cable			
Modem	1200AT	SMARTEAM	1.0m Unshielded AC Power Cord		
			1.0m Shielded data line		

3.2 Devices for Tested System

Remark "*" means equipment under test.

3.3 Deviation Statement

(If any deviation from additions to or exclusions from test method must be stated)

N/A

4 RADIATED EMISSION MEASUREMENT

4.1 Applicable Standard

For unintentional radiator digital devices, the radiated emission shall comply with § 15.109(a). And according to § 5.109(g), as an alternative to the radiated emission limits is CISPR 22.

4.2 Measurement Procedure

1. Setup the configuration per figure 1.

- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site.
- 3. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.
- 4. Repeat step 3 until all frequencies need to be measured were complete.
- 5. Repeat step 4 with search antenna in vertical polarized orientations.
- 6. Check the three frequencies of highest emission with varying the placement of cables associated with EUT to obtain the worse case and record the result.

Sheet 8 of 31 Sheets

Figure 1 : Frequencies measured below 1 GHz configuration

4.3 Measuring Instrument

The following instrument are used for radiated emissions measurement :

Equipment	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	Advantest	R3271	43052001-001	11/19/2004
RF Test Receiver	Rohde & Schwarz	ESBI	1005400052	05/31/2004
RF Test Receiver	Rohde & Schwarz	ESVS 30	843710/008	08/09/2004
Log periodic	EMCO	3146	4526	10/05/2004
Antenna				
Biconical Antenna	EMCO	3110B	2486	11/05/2004
Preamplifier	Hewlett-Packard	8447D	2727A05401	09/29/2004
Bilog Antenna	Chase	CBL6111C	2653	01/13/2005

Note: The standards used to perform this calibration are traceable to NML/ROC, NIST/USA and NPL/UK.

Measuring instrument setup in measured frequency band when specified detector function is used :

Frequency Band	Instrument	Function	Resolution	Video
(MHz)	msuumon	T uniou on	bandwidth	Bandwidth
30 to 1000	RF Test Receiver	Quasi-Peak	120 kHz	N/A
50 10 1000	Spectrum Analyzer	Peak	100 kHz	100 kHz
Above 1000	Spectrum Analyzer	Peak	1 MHz	1 MHz
	Spectrum Analyzer	Average	1 MHz	10 Hz

NVLAD

Sheet 9 of 31 Sheets

4.4 Radiated Emission Data

A. 802.11b

Operation Mode : <u>Working</u>

<u>лкшу</u> т

	03	Tem	perature	: <u>25</u>		Humi	idity : <u>60 %</u>	<u>)</u>							
Emission	Meter H	Reading	Corr'd	Res	ults	AH		DRT		Limit	Margin				
Frequency	(dB µ V)		Factor	(dB µ V/m)		(dB µ V/m)		$(dB \mu V/m)$		(n	n)	deg	gree	@10m	
(MHz)	Hor.	Ver.	(dB)	Hor.	Ver.	Hor.	Ver.	Hor.	Ver.	(dB µ V/m)	(dB)				
187.950	39.4	43.0	-14.0	25.4	29.0	1.0	1.5	27	315	30.0	-1.0				
219.270	39.3	38.5	-12.9	26.4	25.6	1.0	1.0	36	217	30.0	-3.6				
250.590	44.6	44.7	-9.2	35.4	35.5	1.2	1.1	99	196	37.0	-1.5				
375.600	41.6	37.1	-6.3	35.3	30.8	1.1	1.3	75	185	37.0	-1.7				
624.800	35.0	32.4	-2.6	32.4	29.8	1.2	1.0	63	143	37.0	-4.6				
878.900	33.2	29.8	1.6	34.8	31.4	1.0	1.0	82	115	37.0	-2.2				

B. 802.11g

Operation Mode : <u>Working</u>

Test Date : <u>Oct. 24, 2003</u>

Temperature : <u>25</u>

Humidity : <u>60 %</u>

Emission	Meter I	Reading	Corr'd	Results		AH		DRT		Limit	Margin																														
Frequency	(dB	μV)	Factor	(dB µ V/m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		(m)		deg	gree	@10m	
(MHz)	Hor.	Ver.	(dB)	Hor.	Ver.	Hor.	Ver.	Hor.	Ver.	(dB µ V/m)	(dB)																														
185.950	38.2	42.0	-14.0	24.2	28.0	1.0	1.2	27	128	30.0	-2.0																														
218.230	38.4	37.2	-13.0	25.4	24.2	1.0	1.0	36	98	30.0	-4.6																														
248.320	43.7	42.6	-9.4	34.3	33.2	1.2	1.0	14	69	37.0	-2.7																														
377.620	40.3	37.4	-6.2	34.1	31.2	1.0	1.0	28	179	37.0	-2.9																														
628.330	34.5	32.9	-2.7	31.8	30.2	1.0	1.2	152	248	37.0	-5.2																														
875.210	28.6	30.5	1.6	30.2	32.1	1.0	1.0	162	312	37.0	-4.9																														

Note :

1. Remark "---" means that the emissions from EUT are too weak to be measured.

2. AH means antenna height, DRT means degrees of rotation of turntable.

ETC Report No. : ET93R-02-042

4.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna FACTOR + Cable Loss + High Pass Filter Loss - Amplifier Gain

ETC Report No. : ET93R-02-042

4.6 Photos of Radiation Measuring Setup

5 CONDUCTED EMISSION MEASUREMENT

5.1 Standard Applicable

For unintentional digital devices, Line Conducted Emission Limits are in accordance to § 15.107(a).

5.2 Measurement Procedure

1. Setup the configuration per figure 2.

- 2. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
- 3. Record the 6 or 8 highest emissions relative to the limit.
- 4. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then record the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
- 5. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
- 6. Repeat all above procedures on measuring each operation mode of EUT.

Figure 2 : Conducted emissions measurement configuration

5.3 Conducted Emission Data

A. 802.11b

a) Channel Low

Operation Mode	:	Transmitting / Receivin	ng		
Test Date	•	Oct 24 2003	Temperature	· 24	5

	Test Date : <u>Oct. 24, 2003</u>			<u>)3</u>	Tempe	rature :	<u>25</u>	Humid	ity : <u>5(</u>	<u>)</u> %	
Freq.	Meter Reading				Factor	Limit Res			sult		
	(dBµV)					(dB	μV)		(dB	μV)	
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P	Value	AVG.	Value
(MHz)	Ν	L1	N	L1	(dB)	Value	Value	Ν	L1	Ν	L1
3.0742	39.5	39.4			0.6	56.0	46.0	40.1	40.0		
4.0468	48.5	49.1	32.8	35.9	0.6	56.0	46.0	49.1	49.7	33.4	36.5
4.2148	38.1	35.4			0.6	56.0	46.0	38.7	36.0		
4.2265	50.2	45.8	37.1		0.6	56.0	46.0	50.8	46.4	37.7	
4.9921	40.1	34.4			0.6	56.0	46.0	40.7	35.0		
5.0000	41.7	42.1			0.6	56.0	46.0	42.3	42.7		

b) Channel Mid

Operation Mode	: Transmitting / Receiving
Test Date	: Oct. 24, 2003

	Test D	ate	: <u>Oct</u>	. 24, 200	<u>13</u>	Tempe	rature :	<u>25</u>	Humid	ity : <u>5(</u>	<u>)</u> %
Freq.		Meter Reading				Li	mit	Result			
	(dBµV)					(dB	μV)		(dB	μV)	
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P	Value	AVG.	Value
(MHz)	Ν	L1	Ν	L1	(dB)	Value	Value	Ν	L1	Ν	L1
0.1500	41.6	41.1			0.2	66.0	56.0	41.8	41.3		
3.8515	45.4	47.1		36.6	0.6	56.0	46.0	46.0	47.7		37.2
4.0273	38.7	41.7			0.6	56.0	46.0	39.3	42.3		
4.2382	50.1	51.1	39.6		0.6	56.0	46.0	50.7	51.7	40.2	
4.4609	35.1	33.6		40.7	0.6	56.0	46.0	35.7	34.2		41.3
4.8085	36.3	40.2			0.6	56.0	46.0	36.9	40.8		

Note : 1. Please see appendix 1 for Plotted Data

Sheet 14 of 31 Sheets

c) Channel High

Operation Mode : Transmitting / Receiving

	Test D	ate	: <u>Oct</u>	. 24, 200	<u>13</u>	Tempe	rature :	<u>25</u>	Humid	ity : <u>5(</u>	<u>)</u> %
Freq.		Meter Reading				Li	mit	Result			
		(dBµV)				(dB	μV)		(dB	μV)	
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P V	Value	AVG.	Value
(MHz)	Ν	L1	Ν	L1	(dB)	Value	Value	Ν	L1	Ν	L1
3.0859	39.7	39.4			0.6	56.0	46.0	40.3	40.0		
3.8789	34.5	36.1			0.6	56.0	46.0	35.1	36.7		
4.0546	51.8	52.8	41.5	42.8	0.6	56.0	46.0	52.4	53.4	42.1	43.4
4.0625	43.4	45.8			0.6	56.0	46.0	44.0	46.4		
4.2343	42.1	39.5			0.6	56.0	46.0	42.7	40.1		
4.8281	39.9	42.6			0.6	56.0	46.0	40.5	43.2		

Note : 1. Please see appendix 1 for Plotted Data

Sheet 15 of 31 Sheets

B. 802.11g

a) Channel Low

	Operation Mode : Transmitting / Receiving Test Date : Oct. 24, 2003 Temperature : 25 Humidity : 60 %) 0/
	Test Date : <u>Oct. 24, 2005</u>						lature .	<u>23</u>	пиши	lty . <u>Ot</u>	<u>)</u> %
Freq.		Meter I	Reading		Factor	Li	mit		Re	sult	
		(dB	μV)			(dB	μV)	(dBµV)			
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P	Value	AVG.	Value
(MHz)	Ν	L1	Ν	L1	(dB)	Value	Value	Ν	L1	Ν	L1
3.074	37.5	39.2			0.6	56.0	46.0	38.1	39.8		
4.046	44.2	43.2			0.6	56.0	46.0	44.8	43.8		
4.214	38.1	33.2			0.6	56.0	46.0	38.7	33.8		
4.226	44.2	43.1			0.6	56.0	46.0	44.8	43.7		
4.992	38.1	37.2			0.6	56.0	46.0	38.7	37.8		
5.000	40.7	39.1			0.6	56.0	46.0	41.3	39.7		

b) Channel Mid

Operation Mode : Transmitting / Receiving

Test Date : Oct. 24, 200

: <u>Oct. 24, 2003</u> Temperature : <u>25</u>

Humidity : <u>60</u> %

Freq.	Meter Reading			Factor	Limit		Result				
	(dBµV)					(dB	μV)	(dBµV)			
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P	Value	AVG.	Value
(MHz)	N	L1	N	L1	(dB)	Value	Value	Ν	L1	N	L1
0.150	40.6	40.2			0.2	66.0	56.0	40.8	40.4		
3.851	43.2	44.1			0.6	56.0	46.0	43.8	44.7		
4.027	37.2	38.2			0.6	56.0	46.0	37.8	38.8		
4.238	45.0	44.8			0.6	56.0	46.0	45.6	45.4		
4.460	37.1	34.6			0.6	56.0	46.0	37.7	35.2		
4.808	34.2	38.1			0.6	56.0	46.0	34.8	38.7		

Note : 1. Please see appendix 1 for Plotted Data

Sheet 16 of 31 Sheets

c) Channel High

Operation Mode : Transmitting / Receiving

	Test D	ate	: <u>Oct</u>	. 24, 200	<u>)3</u>	Tempe	rature :	<u>25</u>	Humid	ity : <u>5(</u>	<u>)</u> %	
Freq.		Meter Reading			Factor	Limit			Re	Result		
		(dB	μV)			(dB	μV)		(dB	μV)		
	Q.P	Value	AVG.	Value		Q.P	AVG.	Q.P	Value	AVG.	Value	
(MHz)	Ν	L1	Ν	L1	(dB)	Value	Value	Ν	L1	Ν	L1	
3.085	37.2	36.1			0.6	56.0	46.0	37.8	36.7			
3.878	33.5	35.2			0.6	56.0	46.0	34.1	35.8			
4.054	44.1	39.8			0.6	56.0	46.0	44.7	40.4			
4.062	41.2	40.4			0.6	56.0	46.0	41.8	41.0			
4.234	41.8	40.1			0.6	56.0	46.0	42.4	40.7			
4.828	38.9	37.2			0.6	56.0	46.0	39.5	37.8			

Note : 1. Please see appendix 1 for Plotted Data

5.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

RESULT = READING + LISN FACTOR

Assume a receiver reading of 22.5 dB μ V is obtained, and LISN Factor is 0.1 dB, then the total of field strength is 22.6 dB μ V.

RESULT = $22.5 + 0.1 = 22.6 \text{ dB } \mu \text{ V}$ Level in $\mu \text{ V}$ = Common Antilogarithm[($22.6 \text{ dB } \mu \text{ V}$)/20] = $13.48 \mu \text{ V}$

5.5 Conducted Measurement Equipment

The following test equipment are used during the conducted test .

Equipment	Manufacturer	Model No.	Serial No.	Nest Cal. Date
EMI Test Receiver	Rohde and Schwarz	ESCS30	830986/026	01/12/2005
Line Impedance	Rohde and Schwarz	ESH2-Z5	881362/009	09/03/2004
Stabilization network				
Line Impedance	Shibasoku	563	M-54354001	08/05/2004
Stabilization network				
Shielded Room	Riken			N/A
Monitor	IBM	E54		N/A
Printer	HP	LASERJET 1000		N/A
Computer	ACER	Veriton 7500G		N/A

Note: The standards used to perform this calibration are traceable to NML/ROC and NIST/USA.

5.6 Photos of Conduction Measuring Setup

APPENDIX 1 : PLOTTED DATA FOR CONDUCTED EMISSION

ETC Report No. : ET93R-02-042

802.11b

CONDUCTION EMISSION TEST

Peak Value	
EUT:	TEW-435BRM
Manuf:	
Op Cond:	CHLO
Operator:	
Test Spec:	
Comment:	
	N

Final Measurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH LO	
Operator:		
Test Spec:		
Comment:		
	L1	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec

Peaks:

Acc Margin:

8

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH MID	
Operator:		
Test Spec:		
Comment:		
	Ν	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH MID	
Operator:		
Test Spec:		
Comment:		
	L1	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8

Acc Margin:

TEW-435BRM	
CH HIGH	
N	
Detector:	X QP
Meas Time:	1sec
	TEW-435BRM CH HIGH N Detector: Meas Time;

Peaks:

Acc Margin:

8

ETC Report No. : ET93R-02-042

CONDUCTION EMISSION TEST

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH HIGH	
Operator:		
Test Spec:		
Comment:		
	L1	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec

Peaks:

Acc Margin:

8

ETC Report No. : ET93R-02-042

802.11g

CONDUCTION EMISSION TEST

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH LO	
Operator:		
Test Spec:		
Comment:		
	N	
Einel Measurements	D	21

rinal weasurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

Peak Value			
EUT:	TEW-4	435BRM	
Manuf:			
Op Cond:	CH LO		
Operator:			
Test Spec:			
Comment:			
	L1		
Final Measurement:		Detector:	X QP
		Meas Time:	1sec
		Peaks:	8

Acc Margin:

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH MID	
Operator:		
Test Spec:		
Comment:		
	Ν	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH MID	
Operator:		
Test Spec:		
Comment:		
	L1	
Final Massurament	Detector	Y OP
Final measurement.	Detector.	A QP
	lvieas Time:	1sec
	Peaks:	8
	Acc Margin:	25 dB

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH HIGH	
Operator:		
Test Spec:		
Comment:		
	N	
Final Measurement:	Detector	X OP
	Meas Time:	1sec

Peaks:

Acc Margin:

QP

25 dB

8

ETC Report No. : ET93R-02-042

CONDUCTION EMISSION TEST

Peak Value		
EUT:	TEW-435BRM	
Manuf:		
Op Cond:	CH HIGH	
Operator:		
Test Spec:		
Comment:		
	L1	
Final Measurement:	Detector:	X QP
	Meas Time:	1sec

Peaks:

Acc Margin:

QP

8

Sheet 1 of 9 Sheets

RVIAD

CONSTRUCTED PHOTOS of EUT

1. Front View of EUT

2. Bottom View of EUT

Sheet 2 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

3. Side View of EUT

4. Side View of EUT

Sheet 3 of 9 Sheets

RV

AØ

CONSTRUCTED PHOTOS of EUT

5. Top View of EUT

6. Rear View of EUT

Sheet 4 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

7. Internal View of EUT

8. Component View of Main PCB

Sheet 5 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

9. Component View of Main PCB

10. Solder View of Main PCB

Sheet 6 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

11. Component View of Main PCB

12. Component View of Main PCB

Sheet 7 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

13. Solder View of Main PCB

Sheet 8 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

14. Front View of Adaptor

15. Rear View of Adaptor

Sheet 9 of 9 Sheets

CONSTRUCTED PHOTOS of EUT

16. Internal View of Adaptor

17. Internal View of Adaptor

