

Report No. : NEI- EMC-03102-2

Measurement Report

Issued Date	: Oct. 27, 2003
Project No.	: 03E0670
Equipment	: 24-Port 10/100/1000Mbps Gigabit Switch
Model No.	: TEG-S240TX
Applicant	: TRENDWare International Inc. 3135 Kashiwa Street Torrance, CA 90505, U.S.A.

Tested by : Neutron Engineering Inc. EMC Laboratory Data of Test : Jun. 26, 2003 ~ July 02, 2003

Testing Engineer :	Cary Chen
	(Cary Chen)
Technical Manager :	(Andy Chiu)
Authorized Signatory :	(Andy Chiu)

NEUTRON ENGINEERING INC.

No. 132-1, Lane 329, Sec. 2, Palain Rd., Shijr City, Taipei, Taiwan TEL : (02) 2646-5426 FAX : (02) 2646-6815

Report No. : NEI- EMC-03102-2

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (NML) of R.O.C., or National Institute of Standards and Technology (NIST) of U.S.A.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations , inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Assessment Authorities

Test Standard/Scope/Item Acceptance

FCC Part 15 Subpart B IEC/CISPR22 AS/NZS 3548 CNS 13438

FCC Part 15 Subpart B CISPR 22/EN 55022 AS/NZS 3548 VCCI -Technical Requirement CNS 13438 SS IEC/CISPR 22 IEC/EN 61000-3-2 IEC/EN 61000-4-5 IEC/EN 61000-3-3 IEC/EN 61000-4-6 IEC/EN 61000-4-2 IEC/EN 61000-4-8 IEC/EN 61000-4-3 IEC/EN 61000-4-11 IEC/EN 61000-4-4

CISPR 22/EN 55022 IEC/EN 61000-3-2 IEC/EN 61000-3-3 IEC/EN 61000-4-3 IEC/EN 61000-4-3 IEC/EN 61000-4-3 IEC/EN 61000-4-4

VCCI - Technical Requirement

Report No. : NEI- EMC-03102-2

	Table of Contents	Page
1	General Information	6
	1.1 Applicant	6
	1.2 Manufacturer	6
	1.3 Equipment Under Tested	6
	1.4 OEM Brand/Model	6
	1.5 Product Description	6
	1.6 Connecting I/O Port(s)	6
	1.7 Power Supplied	6
	1.8 Products Covered	7
	1.9 Model Difference (Series, Versions, if any)	7
	1.10 EUT Modifications	7
	1.11 Electric Block Diagram	7
	1.12 Photos of EUT	7
2	RFI Emissions Measurement	8
	2.1 Test Facility	8
	2.2 Standard Compliance	8
	2.3 Test Methodology	8
	2.4 Deviations from Standard Test Method	8
	2.5 Sample(s) Tested	8
	2.6 Measurement Instrument	8
	2.7 Measurement Uncertainty	9
	2.8 Tested System Set-Up/Configuration Details	9
	Table -1 Equipments Used in Tested System	10
	Diagram -1 Block diagram showing the configuration of system tested	11
	Table - 2 Equipments Used in Tested System	12
	Table - 3 Information of Interface Cable	12
	2.9 Max.(Worst Case) RF Emission Evaluation	13
	2.10 EUT Operation	13
3	Justification	14
	3.1 Limitations	14
	3.1.1 Power Line Conducted Emission	14
	3.1.2 Radiated Emission Limits	14
	3.2 Measurement Justification	14
	3.2.1 Conducted Emission	14
	3.2.2 Radiated Emission	14

	Table of Contents	Page
	3.3 Measurement Data	15
	Table 4 Conducted Emission Data	16
	Table 5 Radiated Emission Data	20
4	Immunity Test	24
	4.1 Standard compliance/Servrity Level/Criteria	24
	4.2 General Performance Criteria	25
	4.3 Sample(s) Tested	26
	4.4 EUT Operating Condition	26
	4.5 EUT Tested Results	26
	4.6 Test Set-Up	26
	4.7 Measurement Instruments	26
	ESD Test Set-Up Configuration	27
	EFT Test Set-Up Configuration for Power Supply Ports	28
	RF Electromagnetic Field Strength Test Set-Up configuration	29
	EFT Test Set-Up Configuration for Power Supply Ports	30
	EFT Test Set-Up Configuration for CTL/Signal I/O Ports	31
	Surge Test Set-Up Configuration	32
	Injection Current Test Set-Up Configuration	33
	Power Frequency Magnetic Field Test Set-Up Configuration	34
	Voltage Interruption/Dips Test Set-Up Configuration	35
	Radio Frequency Electromagnetic Field Keyed Carrier	36
	Table 6 ESD Testing	37
	Photo(s) shown the location(s) of ESD evaluated	36
	Table- 7 RS Testing	41
	Table 8 EFT/Burst Testing	42
	Table 9 Surge Test Results	43
	Table 10 Injection Current Test Results	44
	Table 11 Power Frequency Magnetic Field Testing	45
	Table 12 Tests of Voltage Interruption/DIPs	46
	Table 13 EMS Measurement Instruments List	47
5	HARMONICS TEST	48
	5.1 Limits	48
	5.1.1 Limits of Harmonic Current	48
	5.1.2 Limits of Fluctuation and Flicker	49

Table of Contents	Page		
5.2 Test Methodology			
5.2.1 Harmonic Current Test	49		
5.2.2 Fluctuation and Flickers Test	49		
5.3 Sample(s) Tested	49		
5.4 Test Set-Up Configuration	49		
5.5 EUT Operating Condition	49		
5.6 EUT Tested Results			
Harmonics / Flicker Test Set-Up Configuration			
Table 14 Harmonics Current Testing	51		
Table 15 Voltage Fluctuations/Flickers Testing	59		
Attachment	63		
A. EUT Modification Description			
B. EUT Test Photos	65		
C. EUT Photos	68		

Report No. : NEI- EMC-03102-2

1. General Information

1.1 Applicant

NameTRENDWare International Inc.Address3135 Kashiwa Street Torrance, CA 90505, U.S.A.

1.2 Manufacturer

Name N/A Address N/A

1.3 Equipment Under Tested

Name: 24-Port 10/100/1000Mbps Gigabit Switch Trade Name: TRENDWare Model No.: TEG-S240TX

1.4 OEM Brand/Model (if applicable)

OEM Brand(s)/Model(s) except the basic model in sub-clause 1.3 is(are) the follows: OEM Brand: N/A Model No.: N/A

1.5 Product Descriptions(Application/Features/Specification)

The EUT is a 24-Port 10/100/1000Mbps Gigabit Switch. Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual

1.6 Connecting I/O Port(s)

24 Ports RJ 45 8P8C

1.7 Power Supplied

Power Source:	AC Mains.
Power Cord:	Detachable, non-shielded type.
Power Rating:	AC I/P 100-240Vac, 50-60Hz/DC O/P 5Vdc, 8A

1.8 Products Covered (if applicable)

The sample tested including the following sub-system/module/accessory :

Sub-system/ Module/ Accessory	Model/Type No.	Int. Inst./ Ext. Cont.
Power Supply	SA40-050100 (LEI)	Int. Inst
Power Supply	UP0401S-05L1 (UMEC)	Int. Inst

1.9 Model Difference (Series, Versions, if any) Except the basic model no. (model designation of the sample tested in this test report), additional model no. covered is(are) :

N/A

1.10 EUT Modifications (if applicable)

No any modification required for the EUT to comply with the standards. Please refer to the Attachment – ${\bf A}$

1.11 Photos of EUT

Please refer to the Attachment – C.

2. RFI Emissions Measurement

2.1Test Facility

The test facilities used to collect the test data in this report is OS02 at the location of No.132-1, Lane 329, Sec. 2, Palain Road, Shijr City, Taipei, Taiwan.

2.2 Standard Compliance

The test data contained in this report relate only to the item(s) listed below : Limitation Class A CISPR 22 :1997/EN 55022 : 1998+A1:2000

2.3 Test Methodology

Both conducted and radiated testing were performed during the max. EMI emission evaluation.

Antenna to EUT distance is 10 m.

Test procedures according to the technical standards: CISPR 22 :1997+A1:2000 / EN 55022 : 1998+A1:2000

2.4 Deviations from Standard Test Method

N/A

2.5 Sample(s) Tested

The representative sample tested in this reports is(are): TEG-S240TX Test results in this test report relate only to the sample(s) tested.

The EUT has been tested according to the following environmental condition:

Input Power	230 Vac/50Hz
Temperature	29
Relative Humidity	59 %

2.6 Measurement Instruments

Valid measurement instruments used in this report refer to **Table-1** enclosed.

2.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

- A. Conducted Measurement :5.05dB
- B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V U , (dB)		NOTE
OS-01	ANSI	30MHz ~ 200MHz	Н	4.59	
		30MHz ~ 200MHz	V	4.80	
		200MHz ~ 1,000MHz	Н	4.47	
		200MHz ~ 1,000MHz	V	5.03	
OS-01	VCCI	30MHz ~ 200MHz	Н	4.59	Only for VCCI Report
		30MHz ~ 200MHz	V	4.48	Only for VCCI Report
		200MHz ~ 1,000MHz	200MHz ~ 1,000MHz H 4.47		Only for VCCI Report
	200MHz ~ 1,000MHz V 4.		4.73	Only for VCCI Report	
OS-02 ANSI 30MHz ~ 200MHz		30MHz ~ 200MHz	Н	4.34	
		30MHz ~ 200MHz V 5.15		5.15	
	200MHz ~ 1,000MHz		Н	5.28	
	200MHz ~ 1,000MHz		V	4.53	
OS-02	OS-02 VCCI 30MHz ~ 200MHz		Н	4.34	Only for VCCI Report
	30MHz ~ 200MHz		V	4.77	Only for VCCI Report
		200MHz ~ 1,000MHz	H	4.91	Only for VCCI Report
		200MHz ~ 1,000MHz	V	4.53	Only for VCCI Report

2.8 Tested System Set-Up/Configuration Details

The system was configured for testing in a typical fashion (as a user would normally use) or in-accordance with the operating configuration specified in the user's manual. A Block Diagram(please refer to the Diagram - 1) and Photos(please refer to the attachment - B) showing the set-up/configuration of system tested. In addition, **Table-2** and **Table-3** provide a detail of all equipment items and cables information used in the system tested.

Report No. : NEI- EMC-03102-2

			e a e ne ne				
ltem	Instruments	Mfr/Brand	Model/Type No.	Serial No.	Calibrated Date	Next Cali. Date	Note
1	LISN	EMCO	3825/2	9605-2539	2003-06-09	2004-06-08	
2	LISN	Rolf Heine	NNB-2/16Z	98083	2002-11-01	2003-10-31	✓
3	LISN	Rolf Heine	NNB-2/16Z	98053	2002-11-15	2003-11-14	✓
4	Pulse Limiter	Electro-Metrics	EM-7600	112644	2002-12-09	2003-12-08	✓
5	50 Terminator	N/A	N/A	N/A	2003-05-09	2004-05-08	✓
6	Test Cable	N/A	C01	N/A	2002-12-10	2003-12-09	✓
7	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9160	3058	2002-10-23	2003-10-22	
8	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9160	3060	2002-10-23	2003-10-22	✓
9	Log-Bicon Antenna	MESS-ELEKTRONIK	VULB 9161	4022	2002-07-25	2003-07-24	
10	Test Cable	N/A	10M_OS01	N/A	2002-12-10	2003-12-09	
11	Test Cable	N/A	OS01-1/-2	N/A	2002-12-10	2003-12-09	
12	Test Cable	N/A	10M_OS02	N/A	2002-12-10	2003-12-09	✓
13	Test Cable	N/A	OS02-1/-2/-3	N/A	2002-12-10	2003-12-09	✓
14	RF Switch	Anritsu	MP59B	M65982	2001-12-09	2003-12-08	
15	Quasi-Peak Adapter	HP	85650A	2521A00844	2003-04-21	2003-10-20	
16	RF Pre-Selector	HP	85685A	2648A00417	2003-04-21	2003-10-20	
17	Spectrum Analyzer	HP	85680B	2634A03025	2003-04-21	2003-10-20	
18	Spectrum Monitor	HP	85662B	2648A13616	2003-04-21	2003-10-20	
19	Pre-Amplifier	Anritsu	MH648A	M09961	2002-12-09	2003-12-08	\checkmark
20	Spectrum Analyzer	ADVAN TEST	R3261C	81720298	2002-08-14	2003-08-13	\checkmark
21	Test Receiver	R&S	ESH3	860156/018	2002-10-22	2003-10-21	
22	Test Receiver	R&S	ESVP	860687/009	2002-12-06	2003-12-05	✓
23	Test Receiver	MEB	SMV41	130	2002-12-06	2003-12-05	✓
24	Test Receiver	PMM	PMM 9000	4310J01002	2002-10-06	2003-10-03	
25	Horn Antenna	EMCO	3115	9605-4803	2003-05-23	2004-05-22	
26	Test Receiver	R&S	ESMI	843977/005	2003-01-13	2004-01-12	
27	Pre-Amplifier	R&S	ESMI-Z7	1045.5020.9801 (612.278 041 00)	2003-05-19	2004-05-18	
28	Absorbing Clamp	R&S	MDS-21	841077/011	2002-08-23	2003-08-22	
29	Voltage Probe	R&S	ESH2-Z3	841.800/023	2002-08-28	2003-08-27	
30	Signal Generator	HP	8648A	3426A01034	2002-10-11	2004-10-08	
31	Antenna Mast	Chance Most	CMTB-1.5	N/A	N/A	N/A	✓
32	Turn Table	Chance Most	CMTB-1.5	N/A	N/A	N/A	\checkmark

Table -1 Measurement Instruments List

Remark :

(1)" ✓" indicates the instrument used in Test Report.
(2)" N/A" denotes No Model No. / Serial No. and No Calibration specified.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
E-1	24-Port 10/100/1000Mbps Gigabit Switch	TRENDWare	TEG-S240TX	N/A(3)	N/A	EUT
E-2	PC	IBM	16W	N/A(3)	BNL093A	
E-3	Printer	SII	DPU-414	N/A(3)	1045105A	
E-4	PS/2 K/B	HP	5181	N/A(3)	N⁄A	
E-5	PS/2 Mouse	HP	P8131	N/A(3)	5185-1212	
E-6	Modem	ACEEX	DM-1414V	N/A(3)	8041708	
E-7	Monitor	HITACHI	CM753ET	N/A(3)	T8L00003	
E-8	Lan Card	D-LINK	DFE-500TX	KA2APC500X2	10M/100M	
E-9	Load	TRENDWare	N/A	N/A	N/A	

 Table - 2
 Equipments Used in Tested System

Report No. : NEI- EMC-03102-2

Note:

- Unless otherwise denoted as EUT in ^rRemark_a column , device(s) used in tested system is a support equipment.
- (2) Unless otherwise marked as in ^rRemark_a column, Neutron consigns the support equipment to the tested system.
- (3) The support equipment was authorized by Declaration of Confirmation.

Table - 3 Information of Interface Cable

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	YES	YES	1.8M	
C-2	YES	NO	1.8M	
C-3	YES	NO	1.5M	
C-4	YES	NO	1.5M	
C-5	YES	NO	1.5M	
C-6	NO	NO	2M	
C-7	NO	NO	1.2M	

Note:

- (1) Unless otherwise marked as in [®]Remark_a column, Neutron consigns the support equipment to the tested system.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.

2.9 Max.(Worst Case) RF Emission Evaluation

- (a) Both conducted and radiated testing were performed during the max. EMI emission evaluation.
- (b) The system was configured for testing in a typical fashion (as a customer would normally use it). The EUT was connected to support equipment-personal computer. Peripherals of PC, such as monitor, keyboard, modem and printer were contained in this system in order to comply with the CISPR22 (1997) Rules requirement. The PC operated in the default 640 x 480 / 31.5 KHz VGA Graphic mode. This operating condition was tested and used to collect the included data.
- (c) To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.
 - Mode 1 10 Mbps (Power Supply: SA40-050100)
 - Mode 2 100 Mbps (power supply: SA40-05100)

Mode 3 1000 Mbps (power supply: SA40-05100)

Mode 4 10 Mbps (power supply: UP0401S-05L1)

Mode 5 100 Mbps (power supply: UP0401S-05L1)

Mode 6 1000 Mbps (power supply: UP0401S-05L1)

The EUT system operated Mode 2, 3, 5, and 6, mentioned above was found to be the worst case during the pre-scanning test.

These operation modes were used for final testing and collecting test data included in this report.

2.10 EUT Operation

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The program contained on a PC hard disk and is auto-starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is:

- 1. Read (write) from (to) mass storage device (Disk).
- 2. Send "H" pattern to video port device (Monitor).
- 3. Send " H " pattern to parallel port device (Printer).
- 4. Send " H " pattern to serial port device (Modem).
- 5. EUT send/receive data to/from PC server (EUT PC).
- 6. Repeated from 2 to 5 continuously.

As the keyboard and mouse are strictly input devices, no data is transmitted to (from) them during test. They are, however, continuously scanned for data input activity.

3. Justification

3.1 Limitations

3.1.1 Power Line Conducted Emission (Frequency Range 150KHz-30MHz)

Measurement	Mains Terminal		Mains Te	Note	
Frequency	Class A	Limits	Class B	Limits	CISPR
Range	(dB	uV)	(dBu	uV)	FCC
(MHz)	QP Mode	AV Mode	QP Mode	AV Mode	Std.
0.15 - 0.50	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 - 5.00	73.00	60.00	56.00	46.00	CISPR
5.00 - 30.0	73.00	60.00	60.00	50.00	CISPR
0.45-1.705	60.00	N/A	48.00	N/A	FCC
1.705-30.0	69.50	N/A	48.00	N/A	FCC

Notes:

- (1). The tighter limit applies at the band edges.
- (2). The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.1.2 Radiated Emission Limits (Frequency Range 30MHz-1000MHz)

Measurement	Quasi-Pe	eak Mode	Quasi-Pe	eak Mode	Note
Frequency	Class A Limits		Class E	3 Limits	CISPR
Range	(dBu	(dBuV/m)		V/m)	FCC
(MHz)	10m	30m	10m	3m	Std.
30.00 -230.00	40.00	30.00	30.00	40.00	CISPR
230.0 -1000.0	47.00	37.00	37.00	47.00	CISPR
30.00 - 88.00	39.00	N/A	30.00	40.00	FCC
88.00 - 216.0	43.50	N/A	33.50	43.50	FCC
216.0 -960.0	46.00	N/A	36.00	46.00	FCC
above 960.0	49.50	N/A	46.00	54.00	FCC

Notes:

- (1). The tighter limit applies at the band edges.
- (2). Emission level (dBuV/m)=20log Emission level (uV/m).
- (3). A measuring distance 0f 10m is a primary used. However, either 3m or 10m (instead of 10m) distance my be allowed. If the distance is 3m, add 10dB to the QP-limit above. If the distance is 10m, subtract 10dB from the QP-limit above.

Report No. : NEI- EMC-03102-2

3.2 Measurement Justification

3.2.1 Conducted Emission

The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and these signals are then Quasi Peak detector mode and Average detector mode re-measured.

Data of **Table - 4**. lists the significant emission frequencies, measured levels, limits and safe margins. All readings are Peak Mode measured unless otherwise stated as QP or AV in column of "Remark ".

If the Peak Mode measured value lower than both QP Mode and AV Mode Limit, EUT shall be deemed to compliance with both QP & AV Limits and then no additional QP Mode or AV Mode measurement performed.

If additional QP or AV Mode measurement needed, and if the QP Mode measured value compliance with the QP Mode Limit and lower than AV Mode Limit, the EUT shall be deemed to meet both QP & AV Limits and then only QP Mode was measured, but AV Mode was not performed.

3.2.2 Radiated Emission

The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Data of **Table - 5**. lists the significant emission frequencies, measured levels, limits and safe margins. All readings are Peak Mode measured unless otherwise stated as QP in column of " Remark ".

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

3.3 Measurement Data

- Table 4. Conducted Emission Data
- Table 5. Radiated Emission Data

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2

Judgement : Passed by17.53 dB at11.38 MHz AVGX _ QP Line _X

Freq.	Terminal	Measured(dBuV)		Limits	s(dBuV)	Safe Margins		
(MHz)	L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)	Note	
0.18	Line	55.59	*	79.00	66.00	-23.41	(QP)	
0.25	Line	48.01	*	79.00	66.00	-30.99	(QP)	
0.31	Line	42.61	*	79.00	66.00	-36.39	(QP)	
3.88	Line	35.04	*	73.00	60.00	-37.96	(QP)	
11.32	Line	52.47	*	73.00	60.00	-20.53	(QP)	
23.26	Line	44.07	*	73.00	60.00	-28.93	(QP)	
0.18	Neutral	54.99	*	79.00	66.00	-24.01	(QP)	
0.25	Neutral	47.61	*	79.00	66.00	-31.39	(QP)	
0.31	Neutral	42.61	*	79.00	66.00	-36.39	(QP)	
11.38	Neutral	55.47	*	73.00	60.00	-17.53	(QP)	
17.20	Neutral	51.41	*	73.00	60.00	-21.59	(QP)	
20.81	Neutral	47.47	*	73.00	60.00	-25.53	(QP)	

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz ; SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz_o Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10Hz,VBW=10Hz, Swp. Time =0.3 sec./MHz_o
- (2) All readings are QP Mode value unless otherwise stated AVG in column of ^INote_J. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform。 In this case, a "*" marked in AVG Mode column of Interference Voltage Measured。
- (3) Measuring frequency range from 150KHz to 30MHz $_{\circ}$

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 3

Judgement : Passed by -16.73 dB at 11.62 MHz AV	VG X	QP	Line	Х	Neutral
---	------	----	------	---	---------

Freq.	Terminal	Measured(dBuV)		Limits	s(dBuV)	Safe Margins		
(MHz)	L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)	Note	
0.18	Line	55.79	*	79.00	66.00	-23.21	(QP)	
0.24	Line	48.61	*	79.00	66.00	-30.39	(QP)	
0.32	Line	42.61	*	79.00	66.00	-36.39	(QP)	
3.84	Line	36.65	*	73.00	60.00	-36.35	(QP)	
11.62	Line	52.67	*	73.00	60.00	-20.33	(QP)	
17.02	Line	42.40	*	73.00	60.00	-30.60	(QP)	
0 15	Neutral	56 96	*	79.00	66 00	-22 04	(QP)	
0.18	Neutral	55.19	*	79.00	66.00	-23.81	(QP)	
0.25	Neutral	47.81	*	79.00	66.00	-31.19	(QP)	
0.29	Neutral	43.41	*	79.00	66.00	-35.59	(QP)	
11.62	Neutral	56.27	*	73.00	60.00	-16.73	(QP)	
17.11	Neutral	52.81	*	73.00	60.00	-20.19	(QP)	

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz ; SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz_o Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10Hz,VBW=10Hz, Swp. Time =0.3 sec./MHz_o
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.
- (3) Measuring frequency range from 150KHz to 30MHz.

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 5

Judgement : Passed by	-29.54	dB at	14.29	MHz	AVG	Х	QP	Line	Х	Neutral
0 ,										

Freq.	Terminal	Measured(dBuV)		Limits	s(dBuV)	Safe Margins		
(MHz)	L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)	Note	
0.15	Line	47.16	*	79.00	66.00	-31.84	(QP)	
0.17	Line	46.18	*	79.00	66.00	-32.82	(QP)	
0.22	Line	43.41	*	79.00	66.00	-35.59	(QP)	
0.65	Line	31.41	*	73.00	60.00	-41.59	(QP)	
4.45	Line	34.96	*	73.00	60.00	-38.04	(QP)	
14.29	Line	43.26	*	73.00	60.00	-29.74	(QP)	
0.15	Neutral	48.76	*	79.00	66.00	-30.24	(QP)	
0.22	Neutral	44.21	*	79.00	66.00	-34.79	(QP)	
0.40	Neutral	34.61	*	79.00	66.00	-44.39	(QP)	
3.07	Neutral	34.14	*	73.00	60.00	-38.86	(QP)	
14.29	Neutral	43.46	*	73.00	60.00	-29.54	(QP)	
23.26	Neutral	41.27	*	73.00	60.00	-31.73	(QP)	

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz ; SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz_o Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10Hz,VBW=10Hz, Swp. Time =0.3 sec./MHz_o
- (2) All readings are QP Mode value unless otherwise stated AVG in column of ^INote_J. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform。 In this case, a "*" marked in AVG Mode column of Interference Voltage Measured。
- (3) Measuring frequency range from 150KHz to $30MHz_{\circ}$

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 6

Judgement : Passed by	-30.64	dB at	0.15	MHz	AVG	Х	QP	Х	Line	Neutral
•					-				-	

Terminal	Measured(dBuV)		Limits	s(dBuV)	Safe Margins		
L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)	Note	
Line	48.36	*	79.00	66.00	-30.64	(QP)	
Line	46.39	*	79.00	66.00	-32.61	(QP)	
Line	43.01	*	79.00	66.00	-35.99	(QP)	
Line	35.81	*	79.00	66.00	-43.19	(QP)	
Line	37.44	*	73.00	60.00	-35.56	(QP)	
Line	39.33	*	73.00	60.00	-33.67	(QP)	
Neutral	47.56	*	79.00	66.00	-31.44	(QP)	
Neutral	45.21	*	79.00	66.00	-33.79	(QP)	
Neutral	40.41	*	79.00	66.00	-38.59	(QP)	
Neutral	37.64	*	73.00	60.00	-35.36	(QP)	
Neutral	36.39	*	73.00	60.00	-36.61	(QP)	
Neutral	38.67	*	73.00	60.00	-34.33	(QP)	
	Terminal L/N Line Line Line Line Line Neutral Neutral Neutral Neutral Neutral Neutral	Terminal Measure L/N QP-Mode Line 48.36 Line 46.39 Line 43.01 Line 35.81 Line 37.44 Line 39.33 Neutral 47.56 Neutral 45.21 Neutral 37.64 Neutral 36.39 Neutral 38.67	Terminal Measured(dBuV) L/N QP-Mode AV-Mode Line 48.36 * Line 46.39 * Line 43.01 * Line 35.81 * Line 37.44 * Line 39.33 * Neutral 47.56 * Neutral 40.41 * Neutral 37.64 * Neutral 36.39 * Neutral 38.67 *	TerminalMeasured(dBuV)Limits L/N QP-ModeAV-ModeQP-ModeLine48.36*79.00Line46.39*79.00Line43.01*79.00Line35.81*79.00Line37.44*73.00Line39.33*73.00Neutral47.56*79.00Neutral45.21*79.00Neutral37.64*73.00Neutral36.39*73.00Neutral38.67*73.00	TerminalMeasured(dBuV)Limits(dBuV) L/N QP-ModeAV-ModeQP-ModeAV-ModeLine48.36*79.0066.00Line46.39*79.0066.00Line43.01*79.0066.00Line35.81*79.0066.00Line35.81*79.0066.00Line37.44*73.0060.00Line39.33*73.0060.00Neutral47.56*79.0066.00Neutral45.21*79.0066.00Neutral40.41*79.0066.00Neutral37.64*73.0060.00Neutral38.67*73.0060.00	TerminalMeasured(dBuV)Limits(dBuV)Safe I L/N QP-ModeAV-ModeQP-ModeAV-Mode(dBuV)Line48.36*79.0066.00-30.64Line46.39*79.0066.00-32.61Line43.01*79.0066.00-35.99Line35.81*79.0066.00-43.19Line37.44*73.0060.00-35.56Line39.33*73.0060.00-33.67Neutral47.56*79.0066.00-31.44Neutral45.21*79.0066.00-33.79Neutral40.41*79.0066.00-35.36Neutral37.64*73.0060.00-35.36Neutral36.39*73.0060.00-36.61Neutral38.67*73.0060.00-34.33	

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz ; SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz_o Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10Hz,VBW=10Hz, Swp. Time =0.3 sec./MHz_o
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note₁. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (3) Measuring frequency range from 150KHz to $30MHz_{\circ}$

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode	2
1VIOGO	~

Judgement : Passed by -3.13	dB at	125.01	MHz	X Peak	QP	Hor. X	Vert.
-							

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Safe Margins
(IVIHZ)	<u>H/V</u>	(abuv)	(dB)	(dBuv/m)	(dBuv/m)	(dBuv/m) Note
112.00	Н	45.07	- 15.87	29.20	40.00	- 10.80
125.01	V	51.30	- 14.43	36.87	40.00	- 3.13
125.25	Н	49.27	- 14.40	34.87	40.00	- 5.13
141.20	V	46.70	- 13.13	33.57	40.00	- 6.43
142.89	Н	41.85	- 13.05	28.80	40.00	- 11.20
147.25	V	46.77	- 12.85	33.92	40.00	- 6.08
250.00	V	47.05	- 13.61	33.44	47.00	- 13.56
250.01	Н	50.25	- 13.61	36.64	47.00	- 10.36
500.00	V	38.45	- 5.63	32.82	47.00	- 14.18
500.00	Н	41.50	- 5.63	35.87	47.00	- 11.13
875.00	Н	33.65	3.48	37.13	47.00	- 9.87
875.03	V	29.52	3.48	33.00	47.00	- 14.00

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of "Note a . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measure-ment didn' t perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not how in table.

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 3							
Judgemen	t : Pas	sed by <u>-6.16</u> d	B at <u>750.02</u> MH	lz <u>X</u> Peak	QP _>	(Hor	Vert.
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Safe M	largins
(MHz)	<u>H/V</u>	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	<u>(dBuV/m)</u>	Note
41.83	V	45.40	- 15.68	29.72	40.00	- 10.28	
46.97	Н	43.80	- 15.50	28.30	40.00	- 11.70	
141.19	Н	42.47	- 13.13	29.34	40.00	- 10.66	
143.92	V	42.60	- 13.00	29.60	40.00	- 10.40	
175.26	Н	42.87	- 14.10	28.77	40.00	- 11.23	
175.43	V	47.37	- 14.12	33.25	40.00	- 6.75	
624.99	Н	35.42	- 1.87	33.55	47.00	- 13.45	
625.01	V	37.30	- 1.87	35.43	47.00	- 11.57	
750.02	Н	40.40	0.44	40.84	47.00	- 6.16	
750.03	V	36.02	0.44	36.46	47.00	- 10.54	
875.01	Н	33.00	3.48	36.48	47.00	- 10.52	
875.04	V	30.60	3.48	34.08	47.00	- 12.92	

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz_o
- (3) Measuring frequency range from 30MHz to 1000MHz $_{\circ}$
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not how in table,

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 5						
Judgemen	t : Pas	sed by <u>-4.03</u> d	B at <u>125.00</u> MHz	z <u>X</u> Peak	QP	_ Hor. X Vert.
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Safe Margins
(MHz)	<u>H/V</u>	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m) Note
36.86	V	49.70	- 15.99	33.71	40.00	- 6.29
37.03	Н	50.42	- 15.97	34.45	40.00	- 5.55
74.59	V	51.07	- 18.25	32.82	40.00	- 7.18
125.00	V	50.40	- 14.43	35.97	40.00	- 4.03
125.02	Н	47.00	- 14.43	32.57	40.00	- 7.43
146.24	Н	42.27	- 12.89	29.38	40.00	- 10.62
250.00	V	43.82	- 13.61	30.21	47.00	- 16.79
625.00	V	36.37	- 1.87	34.50	47.00	- 12.50
625.02	Н	34.07	- 1.87	32.20	47.00	- 14.80
673.73	Н	33.00	- 1.10	31.90	47.00	- 15.10
750.00	V	32.85	0.44	33.29	47.00	- 13.71
750.01	н	31.92	0.44	32.36	47.00	- 14.64

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz_o
- (2) All readings are Peak unless otherwise stated QP in column of ^rNote^a. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measure-ment didn't perform_o
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not how in table.

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 6						
Judgemen	it : Pas	sed by <u>-6.00</u> d	B at <u>37.24</u> MHz	X Peak	QP _X	K Hor. Vert.
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	leasured(FS)	Limits(QP)	Safe Margins
(MHz)	<u>H/V</u>	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	<u>(dBuV/m)</u> Note
36.47	V	49.70	- 16.03	33.67	40.00	- 6.33
37.24	Н	49.95	- 15.95	34.00	40.00	- 6.00
49.76	Н	47.22	- 15.31	31.91	40.00	- 8.09
77.24	V	49.47	- 18.57	30.90	40.00	- 9.10
149.01	Н	43.60	- 12.77	30.83	40.00	- 9.17
175.26	V	46.55	- 14.10	32.45	40.00	- 7.55
203.75	Н	41.52	- 15.56	25.96	40.00	- 14.04
375.01	V	43.15	- 9.13	34.02	47.00	- 12.98
625.00	V	36.55	- 1.87	34.68	47.00	- 12.32
625.01	Н	34.82	- 1.87	32.95	47.00	- 14.05
750.01	Н	35.92	0.44	36.36	47.00	- 10.64
750.03	V	33.40	0.44	33.84	47.00	- 13.16

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz_o
- (2) All readings are Peak unless otherwise stated QP in column of ^rNote^a. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measure-ment didn't perform_o
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not how in table.

Report No. : NEI- EMC-03102-2

4. Immunity Test

4.1 Standard compliance/Servrity Level/Criteria

Tests Standard No	Test Specification	Test Mode Test Ports	Perform. Criteria	Remark
1. ESD IEC 61000-4-2 (1995)	8KV air discharge 4KV contact discharge	Direct Mode	В	
EN 61000-4-2 (1995)	4KV HCP discharge 4KV VCP discharge	Indirect Mode	В	
2. RS IEC 61000-4-3 (1995) EN 61000-4-3 (1996)	80 MHz to 1000 MHz 3V/m(rms), 1 KHz, 80%, AM modulated	Enclosure	A	
3. EFT/Burst	1.0KV(peak) 5/50ns Tr/Th 5KHz Repetition Freq.	Power Supply Port	В	
EN 61000-4-4 (1995)	0.5 KV(peak) 5/50ns Tr/Th 5KHz Repetition Freq.	CTL/Signal Data Line Port	В	
4. Surges	1 KV(5P/5N) 1.2/50(8/20) Tr/Th us	L-L	В	
EN 61000-4-5 (1995)	2 KV(5P/5N) 1.2/50(8/20) Tr/Th us	L-PE N-PE	В	
	0.15 MHz to 80 MHz 3V(rms), 1KHz 80 %, AM Modulated 150Ω source impedance	CTL/Signal Port	A	
5 Injected Current IEC 61000-4-6 (1996) EN 61000-4-6 (1996)	0.15 MHz to 80 MHz 3V(rms), 1KHz 80 % , AM Modulated 150Ω source impedance	AC Power Port	A	
	0.15 MHz to 80 MHz 3V(rms), 1KHz 80 % , AM Modulated 150Ω source impedance	DC Power Port	A	N/A
6. Power Frequency Magnetic Field IEC 61000-4-8 (1993) EN 61000-4-8 (1993)	50 Hz, 1A/m	Enclosure	с	
7. Volt. Interruptions Volt. Dips	Voltage dip > 95%	< 5%	В	
IEC 61000-4-11 (1994) EN 61000-4-11 (1994)	Voltage dip 30% Interruption > 95%	70% < 5%	C C	

* Remark:

N/A: denotes test is not applicable in this Test Report

4.2 General Performance Criteria

According to EN55024:1998+A1:2001 standard, the general performance criteria as following:

Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion B	After the test, the equipment shall continue to operate as intended without operator Intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state if stored data allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer' s instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report No. : NEI- EMC-03102-2

4.3 Sample(s) Tested

The representative sample tested in this report is the same as the statements of **2.5** unless otherwise a special model no. is specified in the record (Table of Test Results). The EUT has been tested according to the following environmental conditions:

Tested items: EN 61000-3-2 / 3 , EN 61000-4-3 / 4 / 5 / 6 / 8 / 11

Input Power	230 Vac/50Hz			
Temperature	27			
Relative Humidity	59 %			
Tested items: EN 61000-4-2				
Input Power	230 Vac/50Hz			
Temperature	26			
Relative Humidity	56 %			

4.4 EUT Operating Condition

The EUT tested system was configured as the statements of **2.10** Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 EUT Tested Results

Tested Items	Basic Standards	EUT Tested Results	Remark
1. ESD	EN 61000-4-2	Table 6 ESD Testing	
2 DE Electromognatio	EN 61000-4-2		
Field Strength	IEC 61000-4-3	Table 7 RS Testing	
3. EFT/Burst	EN 61000-4-4 IEC 61000-4-4	Table 8 EFT/Burst Testing	
4. Surges	EN 61000-4-5 IEC 61000-4-5	Table 9 Surges Testing	
5. Injected Current	EN 61000-4-6	Table 10 Injection Current	
,	IEC 61000-4-6	Testing	
6. Power-frequency	EN 61000-4-8	Table 11 Power Frequency	
Magnetic-field	IEC 61000-4-8	Magnetic Field Testing	
7. Volt. Interruptions	EN 61000-4-11	Table 12 Volt. Interruptions/	
Volt. Dips	IEC 61000-4-11	Dips Testing	

Remark: * N/A - denotes test is not applicable in this Test Report

4.6 Test Set-Up

The configuration of testing system is described as the block diagram which shown in Fig. 4-6-1,4-6-2,4-6-3,4-6-4,4-6-5,4-6-7,4-6-8 of test set-up configuration.

4.7 Measurement Instruments

Valid measurement instruments used in this report refer to Table- 13 enclosed.

Fig. 4-6-1 ESD Test Set-Up Configuration

Fig. 4-6-2 EFT Test Set-Up Configuration for Power Supply Ports

Remark :

If the manufacturer provides a non-detachable power cord more than 1m long with the EUT, the excess length of this power cord shall be folded back and forth forming a bundle 30-40 cm long and situated at a distance of 10 cm above the reference ground plane(GRP).

Report No. : NEI- EMC-03102-2

Fig. 4-6-3(A) EFT Test Set-Up Configuration for Power Supply Ports

Remark :

If the manufacturer provides a non-detachable power cord more than 1m long with the EUT, the excess length of this power cord shall be folded back and forth forming a bundle 30-40 cm long and situated at a distance of 10 cm above the reference ground plane(GRP).

Fig. 4-6-3(B) EFT Test Set-Up Configuration for CTL/Signal I/O Ports

Report No. : NEI- EMC-03102-2

Fig. 4-6-4 Surge Test Set-Up Configuration

Fig. 4-6-5 Injection Current Test Set-Up Configuration

Fig. 4-6-6 Power Frequency Magnetic Field Test Set-Up Configuration

Report No. : NEI- EMC-03102-2

Table 6 ESD Testing

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Mode				Δir Γ)ischa	rae					Co	ntact	Disc	harne		
Mode	2KV		4KV		8	8KV		KV	2	< V	4KV		6KV		8	<v< td=""></v<>
Location	P	N	Р	N	P	N	P	N	Р	N	Р	N	P	N	P	N
1	А	А	А	А	А	А			А	А	А	А				
2	А	А	А	А	А	А			Α	А	А	А				
3	А	А	А	А	А	А			Α	А	А	А				
4	А	А	А	А	А	А			А	А	А	А				
5									А	А	А	А				
6									А	А	А	Α				
7									А	А	А	А				
8									А	А	А	А				
9																
10																
Criteria	B						В									
Result	Α						Α									
Judgment		PASS							PASS							

Mode		HCP Discharge							VCP Discharge							
	2ł	٢V	4ł	٢V	6	6KV 8KV		2	2KV 4KV		61	٢V	8	〈 \		
Location	Ρ	Ν	Ρ	Ν	Р	Ν	Ρ	Ν	Ρ	Ν	Ρ	Ν	Р	Ν	Ρ	Ν
1	А	А	А	А					А	А	А	А				
2	А	А	А	А					А	А	А	А				
3	А	А	А	А					А	А	А	А				
4	А	А	А	А					А	А	А	А				
Criteria					В				В							
Result	A										Α					
Judgment	PASS						PASS									

Note:

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) Test condition:
 - Direct / Indirect (HCP/VCP) discharges: Minimum 50 times (Positive/Negative) at each point.
- Air discharges: Minimum 10 times (Positive/Negative) at each point.
- 3) Test location(s) in which discharge (Air and contact discharge) to be applied illustrated by photos shown in next page(s)
- 4) The Indirect (HCP/VCP) discharges description of test point as following:
- 1.left side 2.right side 3.front side 4.rear side
- 5) N/A denotes test is not applicable in this test report

Air 3

Air 4

_ 38/76_

Report No. : NEI- EMC-03102-2

Photo(s) shown the location(s) of ESD evaluated

Photo(s) shown the location(s) of ESD evaluated

Table 7 RS Testing

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Perform. Criteria	Results	Judgment
80MHz - 500MHz	н /\/	3 V/m(rms)	•	•	5400
500MHz - 1000MHz	117 V	Modulated	A	A	PASS

Note:

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report.

Table 8 EFT/Burst Testing

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6							
Mode	(\mathbf{X})	Powerline		PowerLine	(X) Signa	l/Control Line	
Widde							
Test Level		1KV		0.5KV		5KV	
Port(s)	Polarity	Results	Polarity	Results	Polarity	Results	
	Р	А	Р		Р		
Line (L)	N	A	N		N		
	Р	A	Р		Р		
Neutral (N)	N	A	Ν		N		
	Р	A	Р		Р		
Ground (PE)	N	A	Ν		N		
Signal/Control	Р		Р		Р	А	
Line	N		Ν		N	А	
Criteria		В		В		В	
Result	A		N/A		A		
Judgement		PASS		N/A	P	ASS	

Note:

1) P/N denotes the Positive/Negative polarity of the output voltage.

2) N/A - denotes test is not applicable in this test report

Table 9 Surge Test Results

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Wave Form		1.2/50(8				
EUT Ports Tested	Polarity	Phase	Voltage Criter		Results	Judgement
	+/-	0°				
L – N	+/-	90 [°]	1kV	В	A	PASS
	+/-	180 [°]				
	+/-	270 [°]				
	+/-	0°				
	+/-	90 [°]	2KV	В	Α	PASS
	+/-	180 [°]				
	+/-	270 [°]				
	+/-	0°				
	+/-	90 [°]	2KV	В	Α	PASS
	+/-	180 [°]				
	+/-	270 [°]				
	+/-	0°				
Signal Line (RJ 11)	+/-	90 [°]	1KV	В	N/A	N/A
	+/-	180 [°]				
	+/-	270 [°]				

Note:

1) P/N denotes the Positive/Negative polarity of the output voltage.

2) Polarity and Numbers of Impulses : 5 Pst / Ngt at each tested mode

3) N/A - denotes test is not applicable in this Test Report

Table 10 Injection Current Test Results

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Test Ports (Mode)	Freq. Range MHz)	Field Strength	Perform. Criteria	Results	Judgement
Input/ Output AC. Power Port	0.1580	3V(rms) Modulated	Α	Α	PASS
Input/ Output DC. Power Port	0.15 80	3V(rms) Modulated	Α	N/A	N/A
Signal Line (RJ 45)	0.15 80	3V(rms) Modulated	Α	Α	PASS

Note:

1) P/N denotes the Positive/Negative polarity of the output voltage.

2) N/A - denotes test is not applicable in this Test Report.

Table 11 Power Frequency Magnetic Field Testing

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Test Mode	Test Level	Antenna aspect	Duration (s)	Perform Criteria	Results	Judgement
Enclosure	1 A/m	х	30 s	А	Α	PASS
Enclosure	1 A/m	Y	30 s	А	Α	PASS
Enclosure	1 A/m	Z	30 s	А	А	PASS

Note:

1) P/N denotes the Positive/Negative polarity of the output voltage.

2) N/A - denotes test is not applicable in this test report

Table 12 Tests of Voltage Interruption/DIPs

Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)

Mode 2/3/5/6

Voltage REDUCTION	Duration (ms)	Perform Criteria	Results	Judgement
Voltage dip > 95%	0.5	В	В	PASS
Voltage dip 30%	25	С	В	PASS
Interruption > 95%	250	С	C1	PASS

Note:

1) P/N denotes the Positive/Negative polarity of the output voltage.

2). N/A - denotes test is not applicable in this test report.

Report No. : NEI- EMC-03102-2

Table 13 EMS Measurement Instruments List

ltem	Instruments	Mfr/Brand	Model/Type No.	Serial No.	Calibrated Date	Next Cali.Date	Note
1	ESD Simulator	Schaffner	NSG 435	ESD-001	2002-12-31	2003-12-30	✓
2	Signal Generator	IFR	2023A	202301/368	2002-03-26	2004-03-25	~
3	Power Amplifier(RS)	M2S	AC8113-800/250A	9904-113	2002-03-27	2004-03-26	~
4	Antenna(500W)	MESS-ELEKTRONIK	VULB9161	4022	2002-07-25	2003-07-24	\checkmark
5	EFT Burst Tester	Haefely	PEFT-Junior	083 180-24	2001-12-05	2003-12-04	~
6	Surge Tester	Haefely	PSURGE 4-1	083 665-01	2001-12-03	2003-12-02	\checkmark
7	Power Amplifier(CS)	M2S	A0122-250	9902-111	2002-03-27	2004-03-26	~
8	CDN	MEB	MB	13389	2003-05-30	2005-05-29	✓
9	CDN	MEB	M2	12127	2003-05-30	2005-05-29	
10	CDN	MEB	S1	14393	2003-05-30	2005-05-29	
11	CDN	MEB	S25	12426	2003-05-30	2005-05-29	
12	EM Clamp	MEB	KEMZ 801	14291	2001-06-20	2003-06-19	✓
13	Magnetic Field Tester	Haefely	MAG 100.1	083858-08	2003-06-05	2005-06-04	\checkmark
14	DIP Generator	Haefely	PLINE 1610	083690-16	2001-12-05	2003-12-04	✓
15	Power Analyzer	Chroma	6630	66300000120	2001-12-03	2003-12-02	✓
16	AC Source	Chroma	6530	65300113	2001-07-02	2003-07-01	\checkmark

Remark:

(1)" \checkmark " indicates the instrument used in Test Report.

(2)" N/A" - denotes tests is not applicable in Test Report

5. HARMONICS TEST

5.1 Limits

5.1.1 Limits of Harmonic Current

		IEC 5	55-2			
	Table -	.	Table - II			
Equipment	uipment Harmonic Max. permissible		Equipment	Harmonic	Max. permissible	
Category	Order	harmonic current	Category	Order	harmonic current	
	n	(in Ampers)		n	(in Ampers)	
	odd	harmonics		odd	harmonics	
	3	2.30		3	0.80	
	5	1.14		5	0.60	
	7	0.77		7	0.45	
Non	9	0.40	TV	9	0.30	
Portable	11	0.33	Receivers	11	0.17	
Tools	13	0.21		13	0.12	
or	15≤n≤39	0.15 . 15/n		15≤n≤39	0.10 . 15/n	
TV	even	harmonics		even	harmonics	
Receivers	2	1.08		2	0.30	
	4	0.43		4	0.15	
	8	0.30				
	8≤n≤40	0.23 . 8/n		DC	0.05	

Note: For Portable tools, a multiplication factor of 1.5 shall be applied to the limits specified in Table - I.

EN 61000-3-2/IEC 61000-3-2									
Equipment	Max. permissible	Equipment	Harmonic	Max. per	missible				
Category	harmonic current	Category	Order	harmonic	current				
	(in Ampers)		n	(in A)	(mA/w)				
			3	2.30	3.4				
	Same as Limits		5	1.14	1.9				
Class A	Specified in	Class D	7	0.77	1.0				
	4-2.1, Table - I,		9	0.40	0.5				
	but only odd		11	0.33	0.35				
	harmonics required		13≤n≤39	see Table I	3.85/n				
			only o	dd harmonics r	equired				

Teete	Lir	nits	Descriptions
Tesis	IEC555-3	IEC 61000-3-2	Descriptions
Pst	\leq 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3 %	\leq 3 %	Relative Steady-State V-Chang
dmax	≤4 %	≤4 %	Maximum Relative V-change
d (t)	N/A	\leq 3% for > 200 ms	Relative V-change characteristic

5.1.2 Limits of Fluctuation and Flicker

5.2 Test Methodology

5.2.1 Harmonic Current Test

Tests was performed according to the procedures specified in **Clause 5.0 of IEC555-2** and/or Sub-clause **6.2 of IEC 61000-3-2** depend on which standard adopted for compliance measurement.

5.2.2 Fluctuation and Flickers Test

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctu-ations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC 61000-3-3 depend on which standard adopted for compliance measurement.

All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter, which compliance with the specification given in IEC868, connected as the test set-up configuration described in **Section 6**.

5.3 Sample(s) Tested

The representative sample tested in this reports is the same as the statements of **2.5** unless otherwise a special model no. is specified in the record (Table of Test Results).

5.4 Test Set-Up Configuration

The test set-up configuration, including the auxiliary instruments, is sketched as block diagram of **Fig. 6-4-1** in next page.

5.5 EUT Operating Condition

The EUT tested system was configured as the statements of **2.10** unless otherwise a special operating condition is specified in the follows during the testing.

5.6 EUT Tested Results

Items	Tests	EUT Tested Results	Remark
1.	Harmonics Current	Table 14	
2.	Voltage Fluctuations/Flickers	Table 15	

* Remark: N/A - denotes test is not applicable in this Test Report

Fig. 5-4-1 Harmonics / Flicker Test Set-Up Configuration

NEUTRON EMC LAB. Report No. : NEI- EMC-03102-2 Table 14 Harmonics Current Testing Test Condition (AC Input) : 230.68 V 0.11712 A 12.2674 W 50.00 Hz P.F. 0.45406 Standard No. Apply : () IEC 555-2) Table I () Table I x 1.5 (X) IEC 61000-3-2) Class A (X) Class D (Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable) Mode 2 A 0.06 0.05 0.04 Limits 0.03 Readings 0.02 0.01 П п п 0.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 Hurm. order Reading H# Limit Result H# Reading Limit Result 21 1 0.055420 PASS 0.005860 PASS 2 0.000460 PASS 22 0.000090 PASS 3 0.049430 PASS 23 0.002350 PASS 4 0.000640 PASS 24 0.000090 PASS 5 0.046740 PASS 25 0.001390 PASS 6 0.000370 PASS PASS 26 0.000090 7 0.042900 0.002950 PASS PASS 27 8 0.000400 28 PASS PASS 0.000080 9 0.038090 0.003980 PASS PASS 29 10 0.000300 PASS PASS 30 0.000070 11 0.032740 PASS PASS 0.004340 31 12 0.000260 32 0.000050 PASS PASS 13 PASS 0.026960 PASS 33 0.004100 PASS 14 0.000190 PASS 34 0.000030 PASS 15 0.021110 35 0.003430 PASS 16 0.000130 PASS 0.000020 PASS 36 17 0.015450 PASS 0.002510 PASS 37 18 0.000110 PASS PASS 38 0.000020 19 0.010320 39 PASS 0.001480 PASS 20 0.000090 0.000030 PASS 40 PASS

Test result : PASS

Remark :

 NEUTRON EMC LAB.

 Report No. : NEI- EMC-03102-2

 Table 14
 Harmonics Current Testing

 Test Condition (AC Input) :
 230.68
 V
 0.11712
 A
 12.2674
 W
 50.00
 Hz
 P.F.
 0.45406

 Standard No. Apply :
 (_) IEC 555-2
 (_) Table I
 (_) Table I × 1.5
 (X) Class D

 Special Notes :
 (EUT Operation Mode or Test Configuration Mode, if applicable)
 Mode 2

NEUTRON EMC LAB.	
Report No. : NEI- I	EMC-03102-2
Table 14 Harmonics Current Testing	
Test Condition (AC Input) : 230.68 V 0.13667 A 13.7855 W 50.00 Hz P.F.	0.43726
Standard No. Apply : () IEC 555-2 () Table I () Table I	able I x 1.5
(X) IEC 61000-3-2 () Class A (X) C	lass D
Special Notes : (EUT Operation Mode or Test Configuration Mode, if applicable)	
Mode 3	
A 0.06	7
0.05	
0.04 -1 -1 -1 -1 -1	Limits
0.03	
	Readings
0.02	
0.01	
	1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38	arm. order
H# Reading Limit Result H# Reading Limit	Result
1 0.061870 PASS 21 0.010520	PASS
2 0.000540 PASS 22 0.000070	PASS
3 0.050040 PASS 23 0.000120	1100

4	0.000580	PASS	24	0.000070	PASS
5	0.053410	PASS	25	0.002720	PASS
6	0.000310	PASS	26	0.000080	PASS
7	0.049600	PASS	27	0.001690	PASS
8	0.000350	PASS	28	0.000080	PASS
9	0.044800	PASS	29	0.003040	PASS
10	0.000260	PASS	30	0.000070	PASS
11	0.039420	PASS	31	0.004070	PASS
12	0.000230	PASS	32	0.000060	PASS
13	0.033510	PASS	33	0.004490	PASS
14	0.000160	PASS	34	0.000040	PASS
15	0.027380	PASS	35	0.004350	PASS
16	0.000120	PASS	36	0.000030	PASS
17	0.021320	PASS	37	0.003790	PASS
18	0.000090	PASS	38	0.000030	PASS
19	0.015650	PASS	39	0.002950	PASS
20	0.000070	PASS	40	0.000030	PASS

Test result : PASS Remark :

	NEUTRO	ON EM	C LAB.								
								Report	No. 3	NEI-	EMC-03102-2
		Table	14 Ha	armonio	cs C	urrei	nt 1	Festin	g		
									J		
Test Conditio	on (AC Input):	230.68 V	0.13667	A_13	.7855	W	50.00	Hz	P.F.	0.43726
Standard No	. Apply :	() IE	C 555-2		() Tabl	e l			() T	able I x 1.5
		(X)IE	C 61000-3	3-2	() Clas	s A			(X)C	lass D
Special Note	s:(EUT O	peration	Mode or	Test Config	guratic	n Mod	le, if	applical	ole)		
Mode 3											

		N ENIC LAD.				
				Rej	oort No. : NEI- I	EMC-031
	Т	able 14 H	armonic	s Current Tes	sting	
st Cor	ndition (AC Input)	: <u>231.05</u> V	0.12747 A	A <u>11.8536</u> W <u>50</u> .	00 Hz P.F.	0.4024
Indar	d No. Apply: (() IEC 555-2		() Table I	() Ta	able I x 1
	<u> </u>	(X) IEC 61000-	3-2	() Class A		lass D
ocial	Notes · (EUT Op	eration Mode or	<u>52</u> Test Config	ration Model if ann	(X) O	1033 D
			Test Coning	uration would, ir app	(ilcable)	
de 5						
A	0.06]
	0.04	n				_
						Limits
	0.03	··· ·· ·· -··				
	0.02		.п.			Readings
	0.02					
	0.01		••[]••[]••[]	·· n ·····		
	0.01					
	0.01				ם. ם. ם. ם.	·]
	0.01	8 10 12 14 1	16 18 20 2	2 24 26 28 30	<u></u>	grm. order
H#	0.01	8 10 12 14 1	16 18 20 2	2 24 26 28 30	<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	arm. order
H# 1	0.01 0.00 2 4 6 Reading 0.051990	8 10 12 14 1	16 18 20 2 Result H PASS 2	2 24 26 28 30 # Reading 1 0.014680	32 34 36 38 Hi Limit	grm. order Result PASS
H# 1 2	0.01 0.00 2 4 6 Reading 0.051990 0.000140	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080	32 34 36 38 Ha	grm. order Result PASS PASS
H# 1 2 3	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510	32 34 36 38 Ha	grm. order Result PASS PASS PASS
H# 1 2 3 4	0.01	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 3 0.010510 4 0.000080		grm. order Result PASS PASS PASS PASS PASS
H# 1 2 3 4 5	0.01	8 10 12 14 1	I6 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830	32 34 36 38 H	grm. order Result PASS PASS PASS PASS PASS PASS
H# 1 2 3 4 5 6	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.000140 0.048370 0.000120	8 10 12 14 1	I6 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080		grm. order PASS PASS PASS PASS PASS PASS PASS
H# 1 2 3 4 5 6 7	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820		grm. order PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000100	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070		grm. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000100 0.042090	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.0003820 8 0.000070 9 0.001830		Tesult PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.000140 0.048370 0.000120 0.045570 0.000100 0.042090 0.000080	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 3	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 0		Treasure of the second
H# 1 2 3 4 5 6 7 8 9 10 11	0.01	8 10 12 14 1 Limit	16 18 20 2 Result H PASS 2 PASS 2 PASS 3 PASS 3 PASS 3	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.001950		Tronsport of the second
H# 1 2 3 4 5 6 7 8 9 10 11 12	0.01	8 10 12 14 1 Limit	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3 PASS 3 PASS 3	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.001950 2 0.000050 1		Trm. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10 11 12 13	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.050190 0.000140 0.048370 0.000120 0.044370 0.000120 0.045570 0.000100 0.042090 0.000080 0.038080 0.000070 0.033620	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3 PASS 3 PASS 3 PASS 3 PASS 3 PASS 3 PASS 3	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.0104680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.001950 2 0.000050 3 0.002950		rm. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.050190 0.000140 0.000140 0.048370 0.000120 0.000120 0.000120 0.000100 0.000100 0.000080 0.000080 0.038080 0.000070 0.033620 0.000050	8 10 12 14 1	I6 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000050 1 0.001950 2 0.000050 3 0.002950 4 0.000030		grm. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000100 0.042090 0.0000100 0.038080 0.000070 0.033620 0.000050 0.028840	8 10 12 14 1	I6 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000050 1 0.001950 2 0.000050 3 0.002950 4 0.000030 5 0.003660		grm. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.048370 0.000120 0.045570 0.000100 0.042090 0.000080 0.000080 0.000070 0.033620 0.000050 0.028840 0.000050	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 3 PASS 3 PASS 3	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000050 3 0.002950 4 0.000030 5 0.003660 6 0.00030		m. order Result PASS PASS PASS PASS PASS PASS PASS PAS
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000100 0.042090 0.000050 0.033620 0.000050 0.023840 0.000050 0.023960	8 10 12 14 1	I6 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3	2 24 26 28 30 # Reading 1 0.014680 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.001950 2 0.000050 3 0.002950 4 0.000030 5 0.003660 6 0.00030		Test and the second sec
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000120 0.042090 0.000080 0.038080 0.000080 0.033620 0.000050 0.023840 0.000050 0.023960 0.000060	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3 PASS 3 PASS 3 PASS	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.000050 3 0.002950 4 0.000030 5 0.003660 6 0.00030 7 0.003960 8 0.000020		Test and a second secon
H# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.01 0.00 2 4 6 Reading 0.051990 0.000140 0.050190 0.000140 0.048370 0.000120 0.045570 0.000120 0.045570 0.000100 0.042090 0.000080 0.038080 0.000080 0.033620 0.000050 0.023840 0.000050 0.023960 0.000060 0.019190	8 10 12 14 1	16 18 20 2 Result H PASS 2 PASS 2 PASS 2 PASS 3 PASS 3 PASS	Image: 2 24 26 28 30 Image: 2 24 26 28 30 Image: 2 0.014680 2 0.000080 2 0.000080 3 0.010510 4 0.000080 5 0.006830 6 0.000080 7 0.003820 8 0.000070 9 0.001830 0 0.000060 1 0.000050 3 0.002950 4 0.000030 5 0.003660 6 0.00030 5 0.003960 8 0.000020 9 0.003870 8 0.000020		Transition of the second state of the second s

Test	result	:	PASS
	100		

Remark :

	NEUTR	ON EM	C LAB.								
								Report	No.	: NEI-	EMC-03102-2
		Table	14 H	larmoni	cs (Curre	nt 1	Festin	g		
									U		
Test Conditio	on (AC Inpu	it):	231.05	/_0.12747	A 1	1.8536	W	50.00	Hz	P.F.	0.40247
Standard No	o. Apply:	()	EC 555-2		() Tab	le I			() T	able I x 1.5
		(X)IE	C 61000	-3-2	() Clas	ss A			(X)C	lass D
Special Note	es:(EUT C	peration	n Mode oi	^r Test Confi	gurat	on Mod	de, if	applical	ole)		
Mode 5											

	NEUTRON	EMC LAB.					
					Re	port No. : NEI	- EMC-03102-2
	Та		rmoni		Curront Tor	stina	
	Id	DIE 14 Hai	mom	65	Surrent res	sung	
Test Co	ndition (AC Input) :	231.05 V (0.13903	A 1	3.0921 W 50.	.00 Hz P.F.	0.40756
Standar	d No Apply · (· _			Tabla I v 1 5
Otaridan	$\frac{1}{\sqrt{2}}$) IEC 000-2		7		<u> </u>	
	()	<) IEC 61000-3-2	2	() Class A	<u>(X)</u>	Class D
Special	Notes: (EUT Oper	ration Mode or Te	est Confi	gura	tion Mode, if app	olicable)	
Mode 6							
A	0.06						-
	0.05	•					
	0.04	· n					
							Limits
	0.03						- G
	0.02						Readings
				7			
	0.01		1	n			-
						0.0.0.0	
	2469	10 12 14 16	10 20	22	24 26 28 20 2	2 24 26 20 1	horm order
	2 4 0 c	10 12 14 10	16 20	22	24 20 28 30 3	2 34 30 38 1	agin. order
H#	Reading	Limit	Result	H#	Reading	Limit	Result
1	0.057350		PASS	21	0.014900		PASS
2	0.000150		PASS	22	0.000080		PASS
3	0.055420		PASS	23	0.010320		PASS
4	0.000150		PASS	24	0.000080		PASS
5	0.053280		PASS	25	0.006380		PASS
6	0.000140		PASS	26	0.000080		PASS
7	0.050050		PASS	27	0.003310		PASS
8	0.000110	Alexandre and a second	PASS	28	0.000080		PASS
10	0.046020		PASS	29	0.001870		PASS
10	0.000080		PASS	30	0.000060		PASS
12	0.000060		PASS	22	0.002670		PASS
13	0.036270		PASS	32	0.003690		PASS
14	0.000040		PASS	34	0.000030		PASS
15	0.030800	- 19	PASS	35	0.004280		PASS
16	0.000050		PASS	36	0.000020		PASS
17	0.025270		PASS	37	0.004380		PASS
18	0.000060		PASS	38	0.000020		PASS
19	0.019920		PASS	39	0.004090		PASS
20	0.000070		PASS	40	0.000030		PASS

Test res	ult :	PASS
Remark	:	

	NEUTRON	EMC LAB						
					Report	: No. :	NEI- E	MC-03102-2
	Та	ble 14	Harmoni	cs Curre	nt Testin	ŋg		
						U		
Test Conditio	on (AC Input) :	231.05	V 0.13903	A 13.0921	W 50.00	Hz	P.F	0.40756
Standard No	. Apply : <u>(</u>) IEC 555	2	() Tab	le I		() Ta	ble I x 1.5
	()	X) IEC 6100	0-3-2	() Clas	ss A		(X) Cl	ass D
Special Note	es:(EUT Ope	ration Mode	or Test Conf	iguration Mod	de, if applical	ble)		
Mode 6								

Table 15 Voltage Fluctuations/Flickers Testing

Kind of Product	Power Supply	Model No.:	SA40-050100/100M
Product Category:	N/A	Test Conditio	n (AC Input)
AC Mains Rating	230V, 50Hz, 1 Ø	Voltage(V) :	230.7V
Temperature():	26.0	Current(mA):	116.9mA
Relative Humidity(%):	70.0 % RH	Watts(w):	12.2708w
Test Result	Pass	Frequency(Hz):	49.999Hz
Special Note:	N/A	Power Factor:	0.455

Datas Measured										
Test Item	Std Limits	Test Reading	Test Result							
Relative st-st Voltage Change (dc)	3 %	0.01 %	PASS							
Max. Relative Voltage Change(d _{max})	4 %	2.29 %	PASS							
Duration > 3% dV(d(t) for > 200ms)	0.2 Sec.	0.05 %	PASS							
Short Term Flicker (Pst)	1.00	0.69	PASS							
Long Term Flicker (Plt)	0.65	N/A	N/A							

Table 15 Voltage Fluctuations/Flickers Testing

Kind of Product	Power Supply	Model No.:	SA40-050100/1G
Product Category:	N/A	Test Condition (AC Input)	
AC Mains Rating	230V, 50Hz, 1 Ø	Voltage(V) :	230.7V
Temperature():	26.0	Current(mA):	116.9mA
Relative Humidity(%):	70.0 % RH	Watts(w):	11.89829w
Test Result	Pass	Frequency(Hz):	49.999Hz
Special Note:	N/A	Power Factor:	0.455

Datas Measured				
Test Item	Std Limits	Test Reading	Test Result	
Relative st-st Voltage Change (dc)	3 %	0.01 %	PASS	
Max. Relative Voltage Change(d _{max})	4 %	2.29 %	PASS	
Duration > 3% dV(d(t) for > 200ms)	0.2 Sec.	0.05 %	PASS	
Short Term Flicker (Pst)	1.00	0.69	PASS	
Long Term Flicker (Plt)	0.65	N/A	N/A	

Report No. : NEI- EMC-03102-2

Table 15 Voltage Fluctuations/Flickers Testing

Kind of Product	Power Supply	Model No.:	UP0401S-05L1/100M
Product Category:	N/A	Test Condition (AC Input)	
AC Mains Rating	230V, 50Hz, 1 ∅	Voltage(V) :	230.7V
Temperature():	26.0	Current(mA):	116.9mA
Relative Humidity(%):	70.0 % RH	Watts(w):	13.07786w
Test Result	Pass	Frequency(Hz):	49.999Hz
Special Note:	N/A	Power Factor:	0.455

Datas Measured				
Test Item	Std Limits	Test Reading	Test Result	
Relative st-st Voltage Change (dc)	3 %	0.01 %	PASS	
Max. Relative Voltage Change(d _{max})	4 %	2.29 %	PASS	
Duration > 3% dV(d(t) for > 200ms)	0.2 Sec.	0.05 %	PASS	
Short Term Flicker (Pst)	1.00	0.69	PASS	
Long Term Flicker (Plt)	0.65	N/A	N/A	

Report No. : NEI- EMC-03102-2

Table 15 Voltage Fluctuations/Flickers Testing

Kind of Product	Power Supply	Model No.:	UP0401S-05L1/1G
Product Category:	N/A	Test Condition (AC Input)	
AC Mains Rating	230V, 50Hz, 1 Ø	Voltage(V) :	230.7V
Temperature():	26.0	Current(mA):	116.9mA
Relative Humidity(%):	70.0 % RH	Watts(w):	13.86599w
Test Result	Pass	Frequency(Hz):	49.999Hz
Special Note:	N/A	Power Factor:	0.455

Datas Measured				
Test Item	Std Limits	Test Reading	Test Result	
Relative st-st Voltage Change (dc)	3 %	0.01 %	PASS	
Max. Relative Voltage Change(d _{max})	4 %	2.29 %	PASS	
Duration > 3% dV(d(t) for > 200ms)	0.2 Sec.	0.05 %	PASS	
Short Term Flicker (Pst)	1.00	0.69	PASS	
Long Term Flicker (Plt)	0.65	N/A	N/A	

Attachment

Table Contents

- A. EUT Modification Description
- B. EUT Test Photos
- C. EUT Photos

Attachment - A.

EUT Modification Description

No any modification required for the EUT to comply with the standards.

Attachment - B.

EUT Test Photos

- 1. Conducted Measurement Photos
- 2. Radiated Measurement Photos

Report No. : NEI- EMC-03102-2

Conducted Measurement Photos

Report No. : NEI- EMC-03102-2

Radiated Measurement Photos

Attachment – C

EUT Photos

- 1. Photo #1 Front View
- 2. Photo # 2 Rear View
- 3. Photo # 3 Side View
- 4. Photo # 4~8 Unit Partially Disassembled

Photo #1

Photo # 2

Photo #3

Report No. : NEI- EMC-03102-2

Report No. : NEI- EMC-03102-2

Photo #4

Report No. : NEI- EMC-03102-2

Photo #5

Photo #6

Photo #7

Report No. : NEI- EMC-03102-2

Model No.:SA40-050100

Report No. : NEI- EMC-03102-2

Photo #8

Model No.:UP0401S-05L1

